Ramsey's Theorem

In combinatorics, Ramsey's theorem states that in any colouring of the edges of a sufficiently large complete graph, one will find monochromatic complete subgraphs. For two colours, Ramsey's theorem states that for any pair of positive integers (r,s), there exists a least positive integer R(r,s) such that for any complete graph on R(r,s) vertices, whose edges are coloured red or blue, there exists either a complete subgraph on r vertices which is entirely blue, or a complete subgraph on s vertices which is entirely red. Here R(r,s) signifies an integer that depends on both r and s. It is understood to represent the smallest integer for which the theorem holds.

Ramsey's theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. This initiated the combinatorial theory, now called Ramsey theory, that seeks regularity amid disorder: general conditions for the existence of substructures with regular properties. In this application it is a question of the existence of monochromatic subsets, that is, subsets of connected edges of just one colour.

An extension of this theorem applies to any finite number of colours, rather than just two. More precisely, the theorem states that for any given number of colours c, and any given integers n1,...,nc, there is a number, R(n1, ..., nc), such that if the edges of a complete graph of order R(n1, ..., nc) are coloured with c different colours, then for some i between 1 and c, it must contain a complete subgraph of order ni whose edges are all colour i. The special case above has c = 2 (and n1 = r and n2 = s).

Read more about Ramsey's Theorem:  Example: R(3,3) = 6, Proof of The Theorem, Ramsey Numbers, Asymptotics, A Multicolour Example: R(3,3,3) = 17, Extensions of The Theorem, Experimental Determination With Quantum Algorithm, Infinite Ramsey Theorem, Infinite Version Implies The Finite, Directed Graph Ramsey Numbers

Famous quotes containing the word theorem:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)