Ramsey's Theorem - Proof of The Theorem

Proof of The Theorem

First we prove the theorem for the 2-colour case, by induction on r + s. It is clear from the definition that for all n, R(n, 1) = R(1, n) = 1. This starts the induction. We prove that R(r, s) exists by finding an explicit bound for it. By the inductive hypothesis R(r − 1, s) and R(r, s − 1) exist.

Claim: R(r, s) ≤ R(r − 1, s) + R(r, s − 1): Consider a complete graph on R(r − 1, s) + R(r, s − 1) vertices. Pick a vertex v from the graph, and partition the remaining vertices into two sets M and N, such that for every vertex w, w is in M if (v, w) is blue, and w is in N if (v, w) is red.

Because the graph has R(r − 1, s) + R(r, s − 1) = |M| + |N| + 1 vertices, it follows that either |M| ≥ R(r − 1, s) or |N| ≥ R(r, s − 1). In the former case, if M has a red Ks then so does the original graph and we are finished. Otherwise M has a blue Kr−1 and so has blue Kr by definition of M. The latter case is analogous.

Thus the claim is true and we have completed the proof for 2 colours. We now prove the result for the general case of c colours. The proof is again by induction, this time on the number of colours c. We have the result for c = 1 (trivially) and for c = 2 (above). Now let c > 2.

Claim: R(n1, ..., nc) ≤ R(n1, ..., nc−2, R(nc−1, nc)).

Note, that the right hand side only contains Ramsey numbers for c − 1 colours and 2 colours, and therefore exists and is a finite number t, by the inductive hypothesis. Thus, proving the claim will prove the theorem.

Proof of claim: Consider a graph on t vertices and colour its edges with c colours. Now 'go colour-blind' and pretend that c − 1 and c are the same colour. Thus the graph is now (c − 1)-coloured. By the inductive hypothesis, it contains either a Kni monochromatically coloured with colour i for some 1 ≤ i ≤ (c − 2) or a KR(nc−1,nc)-coloured in the 'blurred colour'. In the former case we are finished. In the latter case, we recover our sight again and see from the definition of R(nc−1, nc) we must have either a (c − 1)-monochrome Knc−1 or a c-monochrome Knc. In either case the proof is complete. – In the 2-color case, if R(r − 1, s) and R(r, s − 1) are both even, the induction inequality can be strengthened to R(r, s) ≤ R(r − 1, s) + R(r, s − 1) − 1.

Read more about this topic:  Ramsey's Theorem

Famous quotes containing the words proof of, proof and/or theorem:

    A short letter to a distant friend is, in my opinion, an insult like that of a slight bow or cursory salutation—a proof of unwillingness to do much, even where there is a necessity of doing something.
    Samuel Johnson (1709–1784)

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)