Quotient Ring - Formal Quotient Ring Construction

Formal Quotient Ring Construction

Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:

a ~ b if and only if ab is in I.

Using the ideal properties, it is not difficult to check that ~ is a congruence relation. In case a ~ b, we say that a and b are congruent modulo I. The equivalence class of the element a in R is given by

= a + I := { a + r : r in I }.

This equivalence class is also sometimes written as a mod I and called the "residue class of a modulo I".

The set of all such equivalence classes is denoted by R/I; it becomes a ring, the factor ring or quotient ring of R modulo I, if one defines

  • (a + I) + (b + I) = (a + b) + I;
  • (a + I)(b + I) = (a b) + I.

(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of R/I is (0 + I) = I, and the multiplicative identity is (1 + I).

The map p from R to R/I defined by p(a) = a + I is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.

Read more about this topic:  Quotient Ring

Famous quotes containing the words formal, ring and/or construction:

    On every formal visit a child ought to be of the party, by way of provision for discourse.
    Jane Austen (1775–1817)

    Close friends contribute to our personal growth. They also contribute to our personal pleasure, making the music sound sweeter, the wine taste richer, the laughter ring louder because they are there.
    Judith Viorst (20th century)

    There’s no art
    To find the mind’s construction in the face:
    He was a gentleman on whom I built
    An absolute trust.
    William Shakespeare (1564–1616)