Formal Quotient Ring Construction
Given a ring R and a two-sided ideal I in R, we may define an equivalence relation ~ on R as follows:
- a ~ b if and only if a − b is in I.
Using the ideal properties, it is not difficult to check that ~ is a congruence relation. In case a ~ b, we say that a and b are congruent modulo I. The equivalence class of the element a in R is given by
- = a + I := { a + r : r in I }.
This equivalence class is also sometimes written as a mod I and called the "residue class of a modulo I".
The set of all such equivalence classes is denoted by R/I; it becomes a ring, the factor ring or quotient ring of R modulo I, if one defines
- (a + I) + (b + I) = (a + b) + I;
- (a + I)(b + I) = (a b) + I.
(Here one has to check that these definitions are well-defined. Compare coset and quotient group.) The zero-element of R/I is (0 + I) = I, and the multiplicative identity is (1 + I).
The map p from R to R/I defined by p(a) = a + I is a surjective ring homomorphism, sometimes called the natural quotient map or the canonical homomorphism.
Read more about this topic: Quotient Ring
Famous quotes containing the words formal, ring and/or construction:
“That anger can be expressed through words and non-destructive activities; that promises are intended to be kept; that cleanliness and good eating habits are aspects of self-esteem; that compassion is an attribute to be prizedall these lessons are ones children can learn far more readily through the living example of their parents than they ever can through formal instruction.”
—Fred Rogers (20th century)
“I saw Eternity the other night,
Like a great ring of pure and endless light,”
—Henry Vaughan (16221695)
“Striving toward a goal puts a more pleasing construction on our advance toward death.”
—Mason Cooley (b. 1927)