Field Extension

Field Extension

In abstract algebra, field extensions are the main object of study in field theory. The general idea is to start with a base field and construct in some manner a larger field which contains the base field and satisfies additional properties. For instance, the set Q(√2) = {a + b√2 | a, bQ} is the smallest extension of Q which includes every real solution to the equation x2 = 2.

Read more about Field Extension:  Definitions

Famous quotes containing the words field and/or extension:

    The birds their quire apply; airs, vernal airs,
    Breathing the smell of field and grove, attune
    The trembling leaves, while universal Pan,
    Knit with the Graces and the Hours in dance,
    Led on th’ eternal Spring.
    John Milton (1608–1674)

    ‘Tis the perception of the beautiful,
    A fine extension of the faculties,
    Platonic, universal, wonderful,
    Drawn from the stars, and filtered through the skies,
    Without which life would be extremely dull.
    George Gordon Noel Byron (1788–1824)