Ring Homomorphism

In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the operations of addition and multiplication.

More precisely, if R and S are rings, then a ring homomorphism is a function f : RS such that

  • f(a + b) = f(a) + f(b) for all a and b in R
  • f(ab) = f(a) f(b) for all a and b in R

The composition of two ring homomorphisms is a ring homomorphism. It follows that the class of all rings forms a category with ring homomorphisms as the morphisms (cf. the category of rings).

Read more about Ring Homomorphism:  Properties, Examples, Types of Ring Homomorphisms

Famous quotes containing the word ring:

    Close friends contribute to our personal growth. They also contribute to our personal pleasure, making the music sound sweeter, the wine taste richer, the laughter ring louder because they are there.
    Judith Viorst (20th century)