Quotient Category - Definition

Definition

Let C be a category. A congruence relation R on C is given by: for each pair of objects X, Y in C, an equivalence relation RX,Y on Hom(X,Y), such that the equivalence relations respect composition of morphisms. That is, if

are related in Hom(X, Y) and

are related in Hom(Y, Z) then g1f1 and g2f2 are related in Hom(X, Z).

Given a congruence relation R on C we can define the quotient category C/R as the category whose objects are those of C and whose morphisms are equivalence classes of morphisms in C. That is,

Composition of morphisms in C/R is well-defined since R is a congruence relation.

There is also a notion of taking the quotient of an Abelian category A by a Serre subcategory B. This is done as follows. The objects of A/B are the objects of A. Given two objects X and Y of A, we define the set of morphisms from X to Y in A/B to be where the limit is over subobjects and such that . Then A/B is an Abelian category, and there is a canonical functor . This Abelian quotient satisfies the universal property that if C is any other Abelian category, and is an exact functor such that F(b) is a zero object of C for each, then there is a unique exact functor such that . (See .)

Read more about this topic:  Quotient Category

Famous quotes containing the word definition:

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)