Quantum Hall Effect

The quantum Hall effect (or integer quantum Hall effect) is a quantum-mechanical version of the Hall effect, observed in two-dimensional electron systems subjected to low temperatures and strong magnetic fields, in which the Hall conductivity σ takes on the quantized values

where e is the elementary charge and h is Planck's constant. The prefactor ν is known as the "filling factor", and can take on either integer (ν = 1, 2, 3, .. ) or rational (ν = 1/3, 2/5, 3/7, 2/3, 3/5, 1/5, 2/9, 3/13, 5/2, 12/5 ...) values. The quantum Hall effect is referred to as the integer or fractional quantum Hall effect depending on whether ν is an integer or fraction respectively. The integer quantum Hall effect is very well understood, and can be simply explained in terms of single-particle orbitals of an electron in a magnetic field (see Landau quantization). The fractional quantum Hall effect is more complicated, as its existence relies fundamentally on electron–electron interactions. It is also very well understood as an integer quantum Hall effect, not of electrons but of charge-flux composites known as composite fermions.

Read more about Quantum Hall Effect:  Applications, History, Integer Quantum Hall Effect – Landau Levels, Mathematics

Famous quotes containing the words quantum, hall and/or effect:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    This is a Senate of equals, of men of individual honor and personal character, and of absolute independence. We know no masters, we acknowledge no dictators. This is a hall for mutual consultation and discussion; not an arena for the exhibition of champions.
    Daniel Webster (1782–1852)

    Power is poison. Its effect on Presidents had always been tragic.
    Henry Brooks Adams (1838–1918)