Formal Definition
(This definition may be extended to any probability distribution using the measure-theoretic definition of probability.)
A random variable X with values in a measure space (usually Rn with the Borel sets as measurable subsets) has as probability distribution the measure X∗P on : the density of X with respect to a reference measure μ on is the Radon–Nikodym derivative:
That is, f is any measurable function with the property that:
for any measurable set .
Read more about this topic: Probability Density Function
Famous quotes containing the words formal and/or definition:
“The bed is now as public as the dinner table and governed by the same rules of formal confrontation.”
—Angela Carter (19401992)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)