Probabilistic Number Theory

Probabilistic number theory is a subfield of number theory, which explicitly uses probability to answer questions of number theory. One basic idea underlying it is that different prime numbers are, in some serious sense, like independent random variables. This however is not an idea that has a unique useful formal expression.

The founders of the theory were Paul Erdős, Aurel Wintner and Mark Kac during the 1930s, one of the most intense periods of investigation in analytic number theory. The Erdős–Wintner theorem and the Erdős–Kac theorem on additive functions were foundational results.

Read more about Probabilistic Number Theory:  See Also

Famous quotes containing the words number and/or theory:

    One may confidently assert that when thirty thousand men fight a pitched battle against an equal number of troops, there are about twenty thousand on each side with the pox.
    Voltaire [François Marie Arouet] (1694–1778)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)