Number Theory

Number theory (or arithmetic) is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers as well as the properties of objects made out of integers (e.g., rational numbers) or defined as generalizations of the integers (e.g., algebraic integers).

Integers can be considered either in themselves or as solutions to equations (diophantine geometry). Questions in number theory are often best understood through the study of analytical objects (e.g., the Riemann zeta function) that encode properties of the integers, primes or other number-theoretic objects in some fashion (analytic number theory). One may also study real numbers in relation to rational numbers, e.g., as approximated by the latter (diophantine approximation).

The older term for number theory is arithmetic. By the early twentieth century, it had been superseded by "number theory". (The word "arithmetic" is used by the general public to mean "elementary calculations"; it has also acquired other meanings in mathematical logic, as in Peano arithmetic, and computer science, as in floating point arithmetic.) The use of the term arithmetic for number theory regained some ground in the second half of the 20th century, arguably in part due to French influence. In particular, arithmetical is preferred as an adjective to number-theoretic.

Read more about Number Theory:  Recent Approaches and Subfields, Applications, Literature

Famous quotes containing the words number and/or theory:

    Among a hundred windows shining
    dully in the vast side
    of greater-than-palace number such-and-such
    one burns
    these several years, each night
    as if the room within were aflame.
    Denise Levertov (b. 1923)

    The things that will destroy America are prosperity-at-any- price, peace-at-any-price, safety-first instead of duty-first, the love of soft living, and the get-rich-quick theory of life.
    Theodore Roosevelt (1858–1919)