Definition
The primitive recursive functions are among the number-theoretic functions, which are functions from the natural numbers (nonnegative integers) {0, 1, 2, ...} to the natural numbers. These functions take n arguments for some natural number n and are called n-ary.
The basic primitive recursive functions are given by these axioms:
- Constant function: The 0-ary constant function 0 is primitive recursive.
- Successor function: The 1-ary successor function S, which returns the successor of its argument (see Peano postulates), is primitive recursive. That is, S(k) = k + 1.
- Projection function: For every n≥1 and each i with 1≤i≤n, the n-ary projection function Pin, which returns its i-th argument, is primitive recursive.
More complex primitive recursive functions can be obtained by applying the operations given by these axioms:
- Composition: Given f, a k-ary primitive recursive function, and k m-ary primitive recursive functions g1,...,gk, the composition of f with g1,...,gk, i.e. the m-ary function is primitive recursive.
- Primitive recursion: Given f, a k-ary primitive recursive function, and g, a (k+2)-ary primitive recursive function, the (k+1)-ary function h is defined as the primitive recursion of f and g, i.e. the function h is primitive recursive when
- and
The primitive recursive functions are the basic functions and those obtained from the basic functions by applying these operations a finite number of times.
Read more about this topic: Primitive Recursive Function
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)