Prime Number - Fundamental Theorem of Arithmetic

The crucial importance of prime numbers to number theory and mathematics in general stems from the fundamental theorem of arithmetic, which states that every positive integer larger than 1 can be written as a product of one or more primes in a way that is unique except for the order of the prime factors. Primes can thus be considered the “basic building blocks” of the natural numbers. For example:

23244 = 2 · 2 · 3 · 13 · 149
= 22 · 3 · 13 · 149. (22 denotes the square or second power of 2.)

As in this example, the same prime factor may occur multiple times. A decomposition:

n = p1 · p2 · ... · pt

of a number n into (finitely many) prime factors p1, p2, ... to pt is called prime factorization of n. The fundamental theorem of arithmetic can be rephrased so as to say that any factorization into primes will be identical except for the order of the factors. So, albeit there are many prime factorization algorithms to do this in practice for larger numbers, they all have to yield the same result.

If p is a prime number and p divides a product ab of integers, then p divides a or p divides b. This proposition is known as Euclid's lemma. It is used in some proofs of the uniqueness of prime factorizations.

Read more about this topic:  Prime Number

Famous quotes containing the words fundamental, theorem and/or arithmetic:

    We have had more brilliant Presidents than Cleveland, and one or two who were considerably more profound, but we have never had one, at least since Washington, whose fundamental character was solider and more admirable.
    —H.L. (Henry Lewis)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build my arithmetic.... It is all the more serious since, with the loss of my rule V, not only the foundations of my arithmetic, but also the sole possible foundations of arithmetic seem to vanish.
    Gottlob Frege (1848–1925)