In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.
Read more about Poisson Summation Formula: Forms of The Equation, Distributional Formulation, Derivation, Applicability, Applications, Generalizations
Famous quotes containing the words summation and/or formula:
“He maintained that the case was lost or won by the time the final juror had been sworn in; his summation was set in his mind before the first witness was called. It was all in the orchestration, he claimed: in knowing how and where to pitch each and every particular argument; who to intimidate; who to trust, who to flatter and court; who to challenge; when to underplay and exactly when to let out all the stops.”
—Dorothy Uhnak (b. 1933)
“Ideals possess the strange quality that if they were completely realized they would turn into nonsense. One could easily follow a commandment such as Thou shalt not kill to the point of dying of starvation; and I might establish the formula that for the proper functioning of the mesh of our ideals, as in the case of a strainer, the holes are just as important as the mesh.”
—Robert Musil (18801942)