Poisson Summation Formula - Applications

Applications

In partial differential equations, the Poisson summation formula provides a rigorous justification for the fundamental solution of the heat equation with absorbing rectangular boundary by the method of images. Here the heat kernel on R2 is known, and that of a rectangle is determined by taking the periodization. The Poisson summation formula similarly provides a connection between Fourier analysis on Euclidean spaces and on the tori of the corresponding dimensions (Grafakos 2004).

In signal processing, the Poisson summation formula leads to the Discrete-time Fourier transform and the Nyquist–Shannon sampling theorem (Pinsky 2002).

Computationally, the Poisson summation formula is useful since a slowly converging summation in real space is guaranteed to be converted into a quickly converging equivalent summation in Fourier space. (A broad function in real space becomes a narrow function in Fourier space and vice versa.) This is the essential idea behind Ewald summation.

The Poisson summation formula may be used to derive Landau's asymptotic formula for the number of lattice points in a large Euclidean sphere. It can also be used to show that if an integrable function, and both have compact support then (Pinsky 2002).

Poisson summation can also be used to derive a variety of functional equations including the functional equation for the Riemann zeta function.

Read more about this topic:  Poisson Summation Formula