Pointed Space - Category of Pointed Spaces

Category of Pointed Spaces

The class of all pointed spaces forms a category Top with basepoint preserving continuous maps as morphisms. Another way to think about this category is as the comma category, ({•} ↓ Top) where {•} is any one point space and Top is the category of topological spaces. (This is also called a coslice category denoted {•}/Top.) Objects in this category are continuous maps {•} → X. Such morphisms can be thought of as picking out a basepoint in X. Morphisms in ({•} ↓ Top) are morphisms in Top for which the following diagram commutes:

It is easy to see that commutativity of the diagram is equivalent to the condition that f preserves basepoints.

As a pointed space {•} is a zero object in Top while it is only a terminal object in Top.

There is a forgetful functor TopTop which "forgets" which point is the basepoint. This functor has a left adjoint which assigns to each topological space X the disjoint union of X and a one point space {•} whose single element is taken to be the basepoint.

Read more about this topic:  Pointed Space

Famous quotes containing the words category, pointed and/or spaces:

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)

    A hairy quadruped, furnished with a tail and pointed ears, probably arboreal in its habits.
    Charles Darwin (1809–1882)

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)