In mathematics, a pointed space is a topological space X with a distinguished basepoint x0 in X. Maps of pointed spaces (based maps) are continuous maps preserving basepoints, i.e. a continuous map f : X → Y such that f(x0) = y0. This is usually denoted
- f : (X, x0) → (Y, y0).
Pointed spaces are important in algebraic topology, particularly in homotopy theory, where many constructions, such as the fundamental group, depend on a choice of basepoint.
The pointed set concept is less important; it is anyway the case of a pointed discrete space.
Read more about Pointed Space: Category of Pointed Spaces, Operations On Pointed Spaces
Famous quotes containing the words pointed and/or space:
“Be sure that it is not you that is mortal, but only your body. For that man whom your outward form reveals is not yourself; the spirit is the true self, not that physical figure which can be pointed out by your finger.”
—Marcus Tullius Cicero (10643 B.C.)
“If we remembered everything, we should on most occasions be as ill off as if we remembered nothing. It would take us as long to recall a space of time as it took the original time to elapse, and we should never get ahead with our thinking. All recollected times undergo, accordingly, what M. Ribot calls foreshortening; and this foreshortening is due to the omission of an enormous number of facts which filled them.”
—William James (18421910)