Partially Ordered Set - Strict and Non-strict Partial Orders

Strict and Non-strict Partial Orders

In some contexts, the partial order defined above is called a non-strict (or reflexive, or weak) partial order. In these contexts a strict (or irreflexive) partial order "<" is a binary relation that is irreflexive and transitive, and therefore asymmetric. In other words, asymmetric (hence irreflexive) and transitive.

Thus, for all a, b, and c in P, we have that:

  • ¬(a < a) (irreflexivity);
  • if a < b then ¬(b < a) (asymmetry); and
  • if a < b and b < c then a < c (transitivity).

There is a 1-to-1 correspondence between all non-strict and strict partial orders.

If "≤" is a non-strict partial order, then the corresponding strict partial order "<" is the reflexive reduction given by:

a < b if and only if (ab and ab)

Conversely, if "<" is a strict partial order, then the corresponding non-strict partial order "≤" is the reflexive closure given by:

ab if and only if a < b or a = b.

This is the reason for using the notation "≤".

Strict partial orders are useful because they correspond more directly to directed acyclic graphs (dags): every strict partial order is a dag, and the transitive closure of a dag is both a strict partial order and also a dag itself.

Read more about this topic:  Partially Ordered Set

Famous quotes containing the words strict, partial and/or orders:

    History creates comprehensibility primarily by arranging facts meaningfully and only in a very limited sense by establishing strict causal connections.
    Johan Huizinga (1872–1945)

    And meanwhile we have gone on living,
    Living and partly living,
    Picking together the pieces,
    Gathering faggots at nightfall,
    Building a partial shelter,
    For sleeping and eating and drinking and laughter.
    —T.S. (Thomas Stearns)

    No man has received from nature the right to give orders to others. Freedom is a gift from heaven, and every individual of the same species has the right to enjoy it as soon as he is in enjoyment of his reason.
    Denis Diderot (1713–1784)