Complete Lattice

In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.

Complete lattices must not be confused with complete partial orders (cpos), which constitute a strictly more general class of partially ordered sets. More specific complete lattices are complete Boolean algebras and complete Heyting algebras (locales).

Read more about Complete Lattice:  Formal Definition, Examples, Morphisms of Complete Lattices, Representation, Further Results

Famous quotes containing the word complete:

    No man, said Birkin, cuts another man’s throat unless he wants to cut it, and unless the other man wants it cutting. This is a complete truth. It takes two people to make a murder: a murderer and a murderee.... And a man who is murderable is a man who has in a profound if hidden lust desires to be murdered.
    —D.H. (David Herbert)