Partial Orders in Topological Spaces
If P is a partially ordered set that has also been given the structure of a topological space, then it is customary to assume that {(a, b) : a ≤ b} is a closed subset of the topological product space . Under this assumption partial order relations are well behaved at limits in the sense that if, and ai ≤ bi for all i, then a ≤ b.
Read more about this topic: Partially Ordered Set
Famous quotes containing the words partial, orders and/or spaces:
“You must not be partial in judging: hear out the small and the great alike; you shall not be intimidated by anyone, for the judgment is Gods.”
—Bible: Hebrew, Deuteronomy 1:17.
“No man has received from nature the right to give orders to others. Freedom is a gift from heaven, and every individual of the same species has the right to enjoy it as soon as he is in enjoyment of his reason.”
—Denis Diderot (17131784)
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)