Partial Pressure - Dalton's Law of Partial Pressures

Dalton's Law of Partial Pressures

The partial pressure of an ideal gas in a mixture is equal to the pressure it would exert if it occupied the same volume alone at the same temperature. This is because ideal gas molecules are so far apart that they don't interfere with each other at all. Actual real-world gases come very close to this ideal.

A consequence of this is that the total pressure of a mixture of ideal gases is equal to the sum of the partial pressures of the individual gases in the mixture as stated by Dalton's law. For example, given an ideal gas mixture of nitrogen (N2), hydrogen (H2) and ammonia (NH3):

where:
= total pressure of the gas mixture
= partial pressure of nitrogen (N2)
= partial pressure of hydrogen (H2)
= partial pressure of ammonia (NH3)

Read more about this topic:  Partial Pressure

Famous quotes containing the words law, partial and/or pressures:

    No law can possibly meet the convenience of every one: we must be satisfied if it be beneficial on the whole and to the majority.
    Titus Livius (Livy)

    There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every man’s title to fame. Only those books come down which deserve to last.
    Ralph Waldo Emerson (1803–1882)

    The pressures of being a parent are equal to any pressure on earth. To be a conscious parent, and really look to that little being’s mental and physical health, is a responsibility which most of us, including me, avoid most of the time because it’s too hard.
    John Lennon (1940–1980)