Packing Problem - Related Fields

Related Fields

In tiling or tessellation problems, there are to be no gaps, nor overlaps. Many of the puzzles of this type involve packing rectangles or polyominoes into a larger rectangle or other square-like shape.

There are significant theorems on tiling rectangles (and cuboids) in rectangles (cuboids) with no gaps or overlaps:

An a × b rectangle can be packed with 1 × n strips iff n divides a or n divides b.
de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.)

The study of polyomino tilings largely concerns two classes of problems: to tile a rectangle with congruent tiles, and to pack one of each n-omino into a rectangle.

A classic puzzle of the second kind is to arrange all twelve pentominoes into rectangles sized 3×20, 4×15, 5×12 or 6×10.

Read more about this topic:  Packing Problem

Famous quotes containing the words related and/or fields:

    Becoming responsible adults is no longer a matter of whether children hang up their pajamas or put dirty towels in the hamper, but whether they care about themselves and others—and whether they see everyday chores as related to how we treat this planet.
    Eda Le Shan (20th century)

    If the sight of the blue skies fills you with joy, if a blade of grass springing up in the fields has power to move you, if the simple things of nature have a message that you understand, rejoice, for your soul is alive ...
    Eleonora Duse (1859–1924)