Ordinal Number - Downward Closed Sets of Ordinals

Downward Closed Sets of Ordinals

A set is downward closed if anything less than an element of the set is also in the set. If a set of ordinals is downward closed, then that set is an ordinal—the least ordinal not in the set.

Examples:

  • The set of ordinals less than 3 is 3 = { 0, 1, 2 }, the smallest ordinal not less than 3.
  • The set of finite ordinals is infinite, the smallest infinite ordinal: ω.
  • The set of countable ordinals is uncountable, the smallest uncountable ordinal: ω1.

Read more about this topic:  Ordinal Number

Famous quotes containing the words downward, closed and/or sets:

    But what she meets and what she fears
    Are less than are the downward years,
    Drawn slowly to the foamless weirs
    Of age, were she to lose him.
    Edwin Arlington Robinson (1869–1935)

    Because you live, O Christ,
    the spirit bird of hope is freed for flying,
    our cages of despair no longer keep us closed and life-denying.
    The stone has rolled away and death cannot imprison!
    O sing this Easter Day, for Jesus Christ has risen!
    Shirley Erena Murray (20th century)

    The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveller.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)