Orbit Method

In mathematics, the orbit method (also known as the Kirillov theory, the method of coadjoint orbits and by a few similar names) establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: orbits of the action of the group on the dual space of its Lie algebra. The theory was introduced by Kirillov (1961, 1962) for nilpotent groups and later extended by Bertram Kostant, Louis Auslander, Lajos Pukánszky and others to the case of solvable groups. Roger Howe found a version of the orbit method that applies to p-adic Lie groups. David Vogan proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.

Read more about Orbit Method:  Relation With Symplectic Geometry, Nilpotent Group Case, Compact Lie Group Case

Famous quotes containing the words orbit and/or method:

    The Fitchburg Railroad touches the pond about a hundred rods south of where I dwell. I usually go to the village along its causeway, and am, as it were, related to society by this link. The men on the freight trains, who go over the whole length of the road, bow to me as to an old acquaintance, they pass me so often, and apparently they take me for an employee; and so I am. I too would fain be a track-repairer somewhere in the orbit of the earth.
    Henry David Thoreau (1817–1862)

    “I have usually found that there was method in his madness.”
    “Some folk might say there was madness in his method.”
    Sir Arthur Conan Doyle (1859–1930)