Limit
While the thrust of Robinson's approach is that one can dispense with the limit-theoretic approach using multiple quantifiers, the notion of limit can be easily recaptured in terms of the standard part function st, namely
if and only if whenever the difference x − a is infinitesimal, the difference ƒ(x) − L is infinitesimal, as well, or in formulas:
- if st(x) = a then st(ƒ(x)) = L,
cf. (ε, δ)-definition of limit.
Read more about this topic: Non-standard Calculus
Famous quotes containing the word limit:
“The only limit to our realization of tomorrow will be our doubts of today. Let us move forward with strong and active faith.”
—Franklin D. Roosevelt (18821945)
“Moreover, the universe as a whole is infinite, for whatever is limited has an outermost edge to limit it, and such an edge is defined by something beyond. Since the universe has no edge, it has no limit; and since it lacks a limit, it is infinite and unbounded. Moreover, the universe is infinite both in the number of its atoms and in the extent of its void.”
—Epicurus (c. 341271 B.C.)
“Today one does not hear much about him.... The fame of his likes circulates briskly but soon grows heavy and stale; and as for history it will limit his life story to the dash between two dates.”
—Vladimir Nabokov (18991977)