Non-equilibrium Thermodynamics - Speculated Thermodynamic Extremum Principles For Energy Dissipation and Entropy Production

Speculated Thermodynamic Extremum Principles For Energy Dissipation and Entropy Production

Jou, Casas-Vazquez, Lebon (1993) note that classical non-equilibrium thermodynamics "has seen an extraordinary expansion since the second world war", and they refer to the Nobel prizes for work in the field awarded to Lars Onsager and Ilya Prigogine. Martyushev and Seleznev (2006) note the importance of entropy in the evolution of natural dynamical structures: "Great contribution has been done in this respect by two scientists, namely Clausius, ..., and Prigogine." Prigogine in his 1977 Nobel Lecture said: "... non-equilibrium may be a source of order. Irreversible processes may lead to a new type of dynamic states of matter which I have called “dissipative structures”." Glansdorff and Prigogine (1971) wrote on page xx: "Such 'symmetry breaking instabilities' are of special interest as they lead to a spontaneous 'self-organization' of the system both from the point of view of its space order and its function."

Analyzing the Rayleigh-Bénard convection cell phenomenon, Chandrasekhar (1961) wrote "Instability occurs at the minimum temperature gradient at which a balance can be maintained between the kinetic energy dissipated by viscosity and the internal energy released by the buoyancy force." With a temperature gradient greater than the minimum, viscosity can dissipate kinetic energy as fast as it is released by convection due to buoyancy, and a steady state with convection is stable. The steady state with convection is often a pattern of macroscopically visible hexagonal cells with convection up or down in the middle or at the 'walls' of each cell, depending on the temperature dependence of the quantities; in the atmosphere under various conditions it seems that either is possible. (Some details are discussed by Lebon, Jou, and Casas-Vásquez (2008) on pages 143-158.) With a temperature gradient less than the minimum, viscosity and heat conduction are so effective that convection cannot keep going.

Glansdorff and Prigogine (1971) on page xv wrote "Dissipative structures have a quite different status: they are formed and maintained through the effect of exchange of energy and matter in non-equilibrium conditions." They were referring to the dissipation function of Rayleigh (1873) that was used also by Onsager (1931, I, 1931, II). On pages 78–80 of their book Glansdorff and Prigogine (1971) consider the stability of laminar flow that was pioneered by Helmholtz; they concluded that at a stable steady state of sufficiently slow laminar flow, the dissipation function was minimum.

These advances have led to proposals for various extremal principles for the "self-organized" régimes that are possible for systems governed by classical linear and non-linear non-equilibrium thermodynamical laws, with stable stationary régimes being particularly investigated. Convection introduces effects of momentum which appear as non-linearity in the dynamical equations. In the more restricted case of no convective motion, Prigogine wrote of "dissipative structures". Šilhavý (1997) offers the opinion that "... the extremum principles of thermodynamics ... do not have any counterpart for steady states (despite many claims in the literature)."

Read more about this topic:  Non-equilibrium Thermodynamics

Famous quotes containing the words principles, energy, dissipation, entropy and/or production:

    With our principles we seek to rule our habits with an iron hand, or to justify, honor, scold, or conceal them:Mtwo men with identical principles are likely to be seeking fundamentally different things with them.
    Friedrich Nietzsche (1844–1900)

    Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.
    Charles Sanders Peirce (1839–1914)

    Life is hard, we say. An oyster’s life is worse. She lives motionless, soundless, her own cold ugly shape her only dissipation ...
    M.F.K. Fisher (b. 1908)

    Just as the constant increase of entropy is the basic law of the universe, so it is the basic law of life to be ever more highly structured and to struggle against entropy.
    Václav Havel (b. 1936)

    Just as modern mass production requires the standardization of commodities, so the social process requires standardization of man, and this standardization is called equality.
    Erich Fromm (1900–1980)