Newtonian Dynamics - Newton's Second Law in A Curved Space

Newton's Second Law in A Curved Space

The Newtonian dynamical system (3) constrained to the configuration manifold by the constraint equations (6) is described by the differential equations


\frac{dq^s}{dt}=w^s,\qquad\frac{d w^s}{dt}+\sum^n_{i=1}\sum^n_{j=1}\Gamma^s_{ij}\,w^i\,w^j=F^s,\qquad s=1,\,\ldots,\,n,

(15)

where are Christoffel symbols of the metric connection produced by the Riemannian metric (11).

Read more about this topic:  Newtonian Dynamics

Famous quotes containing the words newton, law, curved and/or space:

    Glorious things of thee are spoken, Zion city of our God!
    He, whose word cannot be broken, Form’d for thee his own abode:
    On the rock of ages founded, What can shake thy sure repose?
    With salvation’s walls surrounded Thou may’st smile at all thy foes.
    —John Newton (1725–1807)

    The first law of story-telling.... Every man is bound to leave a story better than he found it.
    Humphrey, Mrs. Ward (1851–1920)

    Our life is a faint tracing on the surface of mystery, like the idle, curved tunnels of leaf miners on the face of a leaf. We must somehow take a wider view, look at the whole landscape, really see it, and describe what’s going on here. Then we can at least wail the right question into the swaddling band of darkness, or, if it comes to that, choir the proper praise.
    Annie Dillard (b. 1945)

    Sir Walter Raleigh might well be studied, if only for the excellence of his style, for he is remarkable in the midst of so many masters. There is a natural emphasis in his style, like a man’s tread, and a breathing space between the sentences, which the best of modern writing does not furnish. His chapters are like English parks, or say rather like a Western forest, where the larger growth keeps down the underwood, and one may ride on horseback through the openings.
    Henry David Thoreau (1817–1862)