Neurotransmitter - Actions

Actions

As explained above, the only direct action of a neurotransmitter is to activate a receptor. Therefore, the effects of a neurotransmitter system depend on the connections of the neurons that use the transmitter, and the chemical properties of the receptors that the transmitter binds to.

Here are a few examples of important neurotransmitter actions:

  • Glutamate is used at the great majority of fast excitatory synapses in the brain and spinal cord. It is also used at most synapses that are "modifiable", i.e. capable of increasing or decreasing in strength. Modifiable synapses are thought to be the main memory-storage elements in the brain. Excessive glutamate release can lead to excitotoxicity causing cell death.
  • GABA is used at the great majority of fast inhibitory synapses in virtually every part of the brain. Many sedative/tranquilizing drugs act by enhancing the effects of GABA. Correspondingly glycine is the inhibitory transmitter in the spinal cord.
  • Acetylcholine is distinguished as the transmitter at the neuromuscular junction connecting motor nerves to muscles. The paralytic arrow-poison curare acts by blocking transmission at these synapses. Acetylcholine also operates in many regions of the brain, but using different types of receptors, including nicotinic and muscarinic receptors.
  • Dopamine has a number of important functions in the brain. It plays a critical role in the reward system, but dysfunction of the dopamine system is also implicated in Parkinson's disease and schizophrenia.
  • Serotonin is a monoamine neurotransmitter. Most is produced by and found in the intestine (approximately 90%), and the remainder in central nervous system neurons. It functions to regulate appetite, sleep, memory and learning, temperature, mood, behaviour, muscle contraction, and function of the cardiovascular system and endocrine system. It is speculated to have a role in depression, as some depressed patients are seen to have lower concentrations of metabolites of serotonin in their cerebrospinal fluid and brain tissue.
  • Substance P is an undecapeptide responsible for transmission of pain from certain sensory neurons to the central nervous system.

Neurons expressing certain types of neurotransmitters sometimes form distinct systems, where activation of the system affects large volumes of the brain, called volume transmission. Major neurotransmitter systems include the noradrenaline (norepinephrine) system, the dopamine system, the serotonin system and the cholinergic system.

Drugs targeting the neurotransmitter of such systems affect the whole system; this fact explains the complexity of action of some drugs. Cocaine, for example, blocks the reuptake of dopamine back into the presynaptic neuron, leaving the neurotransmitter molecules in the synaptic gap longer. Since the dopamine remains in the synapse longer, the neurotransmitter continues to bind to the receptors on the postsynaptic neuron, eliciting a pleasurable emotional response. Physical addiction to cocaine may result from prolonged exposure to excess dopamine in the synapses, which leads to the downregulation of some postsynaptic receptors. After the effects of the drug wear off, one might feel depressed because of the decreased probability of the neurotransmitter binding to a receptor. Prozac is a selective serotonin reuptake inhibitor (SSRI), which blocks re-uptake of serotonin by the presynaptic cell. This increases the amount of serotonin present at the synapse and allows it to remain there longer, hence potentiating the effect of naturally released serotonin. AMPT prevents the conversion of tyrosine to L-DOPA, the precursor to dopamine; reserpine prevents dopamine storage within vesicles; and deprenyl inhibits monoamine oxidase (MAO)-B and thus increases dopamine levels.

Diseases may affect specific neurotransmitter systems. For example, Parkinson's disease is at least in part related to failure of dopaminergic cells in deep-brain nuclei, for example the substantia nigra. Treatments potentiating the effect of dopamine precursors have been proposed and effected, with moderate success.

A brief comparison of the major neurotransmitter systems follows:

Neurotransmitter systems
System Origin Effects
Noradrenaline system locus coeruleus
  • arousal
  • reward
Lateral tegmental field
Dopamine system dopamine pathways:
  • mesocortical pathway
  • mesolimbic pathway
  • nigrostriatal pathway
  • tuberoinfundibular pathway
motor system, reward, cognition, endocrine, nausea
Serotonin system caudal dorsal raphe nucleus Increase (introversion), mood, satiety, body temperature and sleep, while decreasing nociception.
rostral dorsal raphe nucleus
Cholinergic system pontomesencephalotegmental complex
  • learning
  • short-term memory
  • arousal
  • reward
basal optic nucleus of Meynert
medial septal nucleus

Read more about this topic:  Neurotransmitter

Famous quotes containing the word actions:

    Coercion may prevent many transgressions; but it robs even actions which are legal of a part of their beauty. Freedom may lead to many transgressions, but it lends even to vices a less ignoble form.
    Karl Wilhelm Von Humboldt (1767–1835)

    We cannot assume the injustice of any actions which only create offense, and especially as regards religion and morals. He who utters or does anything to wound the conscience and moral sense of others, may indeed act immorally; but, so long as he is not guilty of being importunate, he violates no right.
    Karl Wilhelm Von Humboldt (1767–1835)

    Our pride and self-importance are European, while our development and actions are Asiatic.
    Anton Pavlovich Chekhov (1860–1904)