Nash Functions
In real algebraic geometry, a Nash function on an open semialgebraic subset U ⊂ Rn is an analytic function f: U → R satisfying a nontrivial polynomial equation P(x,f(x)) = 0 for all x in U (A semialgebraic subset of Rn is a subset obtained from subsets of the form {x in Rn : P(x)=0} or {x in Rn : P(x) > 0}, where P is a polynomial, by taking finite unions, finite intersections and complements). Some examples of Nash functions:
- Polynomial and regular rational functions are Nash functions.
- is Nash on R.
- the function which associates to a real symmetric matrix its i-th eigenvalue (in increasing order) is Nash on the open subset of symmetric matrices with no multiple eigenvalue.
Nash functions are those functions needed in order to have an implicit function theorem in real algebraic geometry.
Read more about Nash Functions: Nash Manifolds, Local Properties, Global Properties, Generalizations
Famous quotes containing the words nash and/or functions:
“I think that I shall never see
A billboard lovely as a tree.”
—Ogden Nash (19021971)
“The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.”
—Cyril Connolly (19031974)