Nash Functions
In real algebraic geometry, a Nash function on an open semialgebraic subset U ⊂ Rn is an analytic function f: U → R satisfying a nontrivial polynomial equation P(x,f(x)) = 0 for all x in U (A semialgebraic subset of Rn is a subset obtained from subsets of the form {x in Rn : P(x)=0} or {x in Rn : P(x) > 0}, where P is a polynomial, by taking finite unions, finite intersections and complements). Some examples of Nash functions:
- Polynomial and regular rational functions are Nash functions.
- is Nash on R.
- the function which associates to a real symmetric matrix its i-th eigenvalue (in increasing order) is Nash on the open subset of symmetric matrices with no multiple eigenvalue.
Nash functions are those functions needed in order to have an implicit function theorem in real algebraic geometry.
Read more about Nash Functions: Nash Manifolds, Local Properties, Global Properties, Generalizations
Famous quotes containing the words nash and/or functions:
“Middle age is when youve met so many people that every new person you meet reminds you of someone else. . . .”
—Ogden Nash (19021971)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)