Nash Functions - Local Properties

Local Properties

The local properties of Nash functions are well understood. The ring of germs of Nash functions at a point of a Nash manifold of dimension n is isomorphic to the ring of algebraic power series in n variables (i.e., those series satisfying a nontrivial polynomial equation), which is the henselization of the ring of germs of rational functions. In particular, it is a regular local ring of dimension n.

Read more about this topic:  Nash Functions

Famous quotes containing the words local and/or properties:

    Hey, you dress up our town very nicely. You don’t look out the Chamber of Commerce is going to list you in their publicity with the local attractions.
    Robert M. Fresco, and Jack Arnold. Dr. Matt Hastings (John Agar)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)