Global Properties
The global properties are more difficult to obtain. The fact that the ring of Nash functions on a Nash manifold (even noncompact) is noetherian was proved independently (1973) by Jean-Jacques Risler and Gustave Efroymson. Nash manifolds have properties similar to but weaker than Cartan's theorems A and B on Stein manifolds. Let denote the sheaf of Nash function germs on a Nash manifold M, and be a coherent sheaf of -ideals. Assume is finite, i.e., there exists a finite open semialgebraic covering of M such that, for each i, is generated by Nash functions on . Then is globally generated by Nash functions on M, and the natural map
is surjective. However
contrarily to the case of Stein manifolds.
Read more about this topic: Nash Functions
Famous quotes containing the words global and/or properties:
“Much of what Mr. Wallace calls his global thinking is, no matter how you slice it, still globaloney. Mr. Wallaces warp of sense and his woof of nonsense is very tricky cloth out of which to cut the pattern of a post-war world.”
—Clare Boothe Luce (19031987)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)