Universal Sets and Absolute Complements
In certain contexts we may consider all sets under consideration as being subsets of some given universal set. For instance, if we are investigating properties of the real numbers R (and subsets of R), then we may take R as our universal set. A true universal set is not included in standard set theory (see Paradoxes below), but is included in some non-standard set theories.
Given a universal set U and a subset A of U, we may define the complement of A (in U) as
- AC := {x ∈ U : x ∉ A}.
In other words, AC ("A-complement"; sometimes simply A', "A-prime" ) is the set of all members of U which are not members of A. Thus with R, Z and O defined as in the section on subsets, if Z is the universal set, then OC is the set of even integers, while if R is the universal set, then OC is the set of all real numbers that are either even integers or not integers at all.
Read more about this topic: Naive Set Theory
Famous quotes containing the words universal, sets and/or absolute:
“Not so many years ago there there was no simpler or more intelligible notion than that of going on a journey. Travelmovement through spaceprovided the universal metaphor for change.... One of the subtle confusionsperhaps one of the secret terrorsof modern life is that we have lost this refuge. No longer do we move through space as we once did.”
—Daniel J. Boorstin (b. 1914)
“The vain man does not wish so much to be prominent as to feel himself prominent; he therefore disdains none of the expedients for self-deception and self-outwitting. It is not the opinion of others that he sets his heart on, but his opinion of their opinion.”
—Friedrich Nietzsche (18441900)
“the absolute flight and rest
The universal blue
And local green suggest.”
—Robert Frost (18741963)