Naive set theory is one of several theories of sets used in the discussion of the foundations of mathematics. The informal content of this naive set theory supports both the aspects of mathematical sets familiar in discrete mathematics (for example Venn diagrams and symbolic reasoning about their Boolean algebra), and the everyday usage of set theory concepts in most contemporary mathematics.
Sets are of great importance in mathematics; in fact, in modern formal treatments, most mathematical objects (numbers, relations, functions, etc.) are defined in terms of sets. Naive set theory can be seen as a stepping-stone to more formal treatments, and suffices for many purposes.
Read more about Naive Set Theory: Requirements, Sets, Membership and Equality, Specifying Sets, Subsets, Universal Sets and Absolute Complements, Unions, Intersections, and Relative Complements, Ordered Pairs and Cartesian Products, Some Important Sets, Paradoxes
Famous quotes containing the words naive, set and/or theory:
“Cynicism is full of naive disappointments.”
—Mason Cooley (b. 1927)
“What these perplexities of my uncle Toby were,tis impossible for you to guess;Mif you could,I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,I would tear it out of my book.”
—Laurence Sterne (17131768)
“The theory of the Communists may be summed up in the single sentence: Abolition of private property.”
—Karl Marx (18181883)