In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotone Upstream-centered Schemes for Conservation Laws, and the term was introduced in a seminal paper by Bram van Leer (van Leer, 1979). In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy.
The idea is to replace the piecewise constant approximation of Godunov's scheme by reconstructed states, derived from cell-averaged states obtained from the previous time-step. For each cell, slope limited, reconstructed left and right states are obtained and used to calculate fluxes at the cell boundaries (edges). These fluxes can, in turn, be used as input to a Riemann solver, following which the solutions are averaged and used to advance the solution in time. Alternatively, the fluxes can be used in Riemann-solver-free schemes, such as the Kurganov and Tadmor scheme outlined below.
Read more about MUSCL Scheme: Linear Reconstruction, Kurganov and Tadmor Central Scheme, Piecewise Parabolic Reconstruction, Example: 1D Euler Equations
Famous quotes containing the word scheme:
“We are all bound to the throne of the Supreme Being by a flexible chain which restrains without enslaving us. The most wonderful aspect of the universal scheme of things is the action of free beings under divine guidance.”
—Joseph De Maistre (17531821)