In number theory, a multiplicative function is an arithmetic function f(n) of the positive integer n with the property that f(1) = 1 and whenever a and b are coprime, then
- f(ab) = f(a) f(b).
An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a) f(b) holds for all positive integers a and b, even when they are not coprime.
Read more about Multiplicative Function: Examples, Properties, Convolution
Famous quotes containing the word function:
“As a medium of exchange,... worrying regulates intimacy, and it is often an appropriate response to ordinary demands that begin to feel excessive. But from a modernized Freudian view, worryingas a reflex response to demandnever puts the self or the objects of its interest into question, and that is precisely its function in psychic life. It domesticates self-doubt.”
—Adam Phillips, British child psychoanalyst. Worrying and Its Discontents, in On Kissing, Tickling, and Being Bored, p. 58, Harvard University Press (1993)