In number theory, a multiplicative function is an arithmetic function f(n) of the positive integer n with the property that f(1) = 1 and whenever a and b are coprime, then
- f(ab) = f(a) f(b).
An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a) f(b) holds for all positive integers a and b, even when they are not coprime.
Read more about Multiplicative Function: Examples, Properties, Convolution
Famous quotes containing the word function:
“The function of muscle is to pull and not to push, except in the case of the genitals and the tongue.”
—Leonardo Da Vinci (14251519)
Related Subjects
Related Phrases
Related Words