Modular Group - Relationship To Hyperbolic Geometry

Relationship To Hyperbolic Geometry

See also: PSL2(R)

The modular group is important because it forms a subgroup of the group of isometries of the hyperbolic plane. If we consider the upper half-plane model H of hyperbolic plane geometry, then the group of all orientation-preserving isometries of H consists of all Möbius transformations of the form

where a, b, c, and d are real numbers and adbc = 1. Put differently, the group PSL(2,R) acts on the upper half-plane H according to the following formula:

This (left-)action is faithful. Since PSL(2,Z) is a subgroup of PSL(2,R), the modular group is a subgroup of the group of orientation-preserving isometries of H.

Read more about this topic:  Modular Group

Famous quotes containing the words relationship and/or geometry:

    When any relationship is characterized by difference, particularly a disparity in power, there remains a tendency to model it on the parent-child-relationship. Even protectiveness and benevolence toward the poor, toward minorities, and especially toward women have involved equating them with children.
    Mary Catherine Bateson (20th century)

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)