Overview
Any set of data can be represented by a string of symbols from a finite (say, binary) alphabet.
is based on the following insight: any regularity in a given set of data can be used to compress the data, i.e. to describe it using fewer symbols than needed to describe the data literally." (Grünwald, 1998)
To select the hypothesis that captures the most regularity in the data, scientists look for the hypothesis with which the best compression can be achieved. In order to do this, a code is fixed to compress the data, most generally with a (Turing-complete) computer language. A program to output the data is written in that language; thus the program effectively represents the data. The length of the shortest program that outputs the data is called the Kolmogorov complexity of the data. This is the central idea of Ray Solomonoff's idealized theory of inductive inference.
Read more about this topic: Minimum Description Length