Metric Tensor - Canonical Measure and Volume Form

Canonical Measure and Volume Form

In analogy with the case of surfaces, a metric tensor on an n-dimensional paracompact manifold M gives rise to a natural way to measure the n-dimensional volume of subsets of the manifold. The resulting natural positive Borel measure allows one to develop a theory of integrating functions on the manifold by means of the associated Lebesgue integral.

A measure can be defined, by the Riesz representation theorem, by giving a positive linear functional Λ on the space C0(M) of compactly supported continuous functions on M. More precisely, if M is a manifold with a (pseudo-)Riemannian metric tensor g, then there is a unique positive Borel measure μg such that for any coordinate chart (U,φ),

for all ƒ supported in U. Here det g is the determinant of the matrix formed by the components of the metric tensor in the coordinate chart. That Λ is well-defined on functions supported in coordinate neighborhoods is justified by Jacobian change of variables. It extends to a unique positive linear functional on C0(M) by means of a partition of unity.

If M is in addition oriented, then it is possible to define a natural volume form from the metric tensor. In a positively oriented coordinate system (x1,...,xn) the volume form is represented as

where the dxi are the coordinate differentials and the wedge ∧ denotes the exterior product in the algebra of differential forms. The volume form also gives a way to integrate functions on the manifold, and this geometric integral agrees with the integral obtained by the canonical Borel measure.

Read more about this topic:  Metric Tensor

Famous quotes containing the words canonical, measure, volume and/or form:

    If God bestowed immortality on every man then when he made him, and he made many to whom he never purposed to give his saving grace, what did his Lordship think that God gave any man immortality with purpose only to make him capable of immortal torments? It is a hard saying, and I think cannot piously be believed. I am sure it can never be proved by the canonical Scripture.
    Thomas Hobbes (1579–1688)

    ...the measure you give will be the measure you get...
    Bible: New Testament, Mark 4:24.

    Jesus.

    She carries a book but it is not
    the tome of the ancient wisdom,
    the pages, I imagine, are the blank pages
    of the unwritten volume of the new.
    Hilda Doolittle (1886–1961)

    A novel which survives, which withstands and outlives time, does do something more than merely survive. It does not stand still. It accumulates round itself the understanding of all these persons who bring to it something of their own. It acquires associations, it becomes a form of experience in itself, so that two people who meet can often make friends, find an approach to each other, because of this one great common experience they have had ...
    Elizabeth Bowen (1899–1973)