Abstract Algebraic Aspects and Generalizations
Matrices can be generalized in different ways. Abstract algebra uses matrices with entries in more general fields or even rings, while linear algebra codifies properties of matrices in the notion of linear maps. It is possible to consider matrices with infinitely many columns and rows. Another extension are tensors, which can be seen as higher-dimensional arrays of numbers, as opposed to vectors, which can often be realised as sequences of numbers, while matrices are rectangular or two-dimensional array of numbers. Matrices, subject to certain requirements tend to form groups known as matrix groups.
Read more about this topic: Matrix (mathematics)
Famous quotes containing the words abstract, algebraic and/or aspects:
“But it thought no bed too narrowit stood with lips askew
And shook its great head sadly like the abstract Jew.”
—Robert Penn Warren (19051989)
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“... of all the aspects of social misery nothing is so heartbreaking as unemployment ...”
—Jane Addams (18601935)