Long Division - Method

Method

In English-speaking countries, long division does not use the slash (/) or obelus (÷) signs, instead displaying the dividend, divisor, and (once it is found) quotient in a tableau.

The process is begun by dividing the left-most digit of the dividend by the divisor. The quotient (rounded down to an integer) becomes the first digit of the result, and the remainder is calculated (this step is notated as a subtraction). This remainder carries forward when the process is repeated on the following digit of the dividend (notated as 'bringing down' the next digit to the remainder). When all digits have been processed and no remainder is left, the process is complete.

An example is shown below, representing the division of 500 by 4 (with a result of 125).

125 (Explanations) 4)500 4 (4 × 1 = 4) 10 (5 - 4 = 1) 8 (4 × 2 = 8) 20 (10 - 8 = 2) 20 (4 × 5 = 20) 0 (20 - 20 = 0)

In the above example, the first step is to find the shortest sequence of digits starting from the left end of the dividend, 500, that the divisor 4 goes into at least once; this shortest sequence in this example is simply the first digit, 5. The largest number that the divisor 4 can be multiplied by without exceeding 5 is 1, so the digit 1 is put above the 5 to start constructing the quotient. Next, the 1 is multiplied by the divisor 4, to obtain the largest whole number (4 in this case) that is a multiple of the divisor 4 without exceeding the 5; this product of 1 times 4 is 4, so 4 is placed underneath the 5. Next the 4 under the 5 is subtracted from the 5 to get the remainder, 1, which is placed under the 4 under the 5. This remainder 1 is necessarily smaller than the divisor 4. Next the first as-yet unused digit in the dividend, in this case the first digit 0 after the 5, is copied directly underneath itself and next to the remainder 1, to form the number 10. At this point the process is repeated enough times to reach a stopping point: The largest number by which the divisor 4 can be multiplied without exceeding 10 is 2, so 2 is written above the 0 that is next to the 5 — that is, directly above the last digit in the 10. Then the latest entry to the quotient, 2, is multiplied by the divisor 4 to get 8, which is the largest multiple of 4 that does not exceed 10; so 8 is written below 10, and the subtraction 10 minus 8 is performed to get the remainder 2, which is placed below the 8. This remainder 2 is necessarily smaller than the divisor 4. The next digit of the dividend (the last 0 in 500) is copied directly below itself and next to the remainder 2, to form 20. Then the largest number by which the divisor 4 can be multiplied without exceeding 20 is ascertained; this number is 5, so 5 is placed above the last dividend digit that was brought down (i.e., above the rightmost 0 in 500). Then this new quotient digit 5 is multiplied by the divisor 4 to get 20, which is written at the bottom below the existing 20. Then 20 is subtracted from 20, yielding 0, which is written below the 20. We know we are done now because two things are true: there are no more digits to bring down from the dividend, and the last subtraction result was 0.

If the last remainder when we ran out of dividend digits had been something other than 0, there would have been two possible courses of action. (1) We could just stop there and say that the dividend divided by the divisor is the quotient written at the top with the remainder written at the bottom; equivalently we could write the answer as the quotient followed by a fraction that is the remainder divided by the dividend. Or, (2) we could extend the dividend by writing it as, say, 500.000... and continue the process (using a decimal point in the quotient directly above the decimal point in the dividend), in order to get a decimal answer, as in the following example.

31.75 4)127.00 12 (12-12=0 which is written on the following line) 07 (the seven is brought down from the dividend 127) 4 30 (3 is the remainder which is divided by 4 to give 0.75) 28 (7 × 4 = 28) 20 (an additional zero is brought down) 20 (5 × 4 = 20) 0

In this example, the decimal part of the result is calculated by continuing the process beyond the units digit, "bringing down" zeros as being the decimal part of the dividend.

This example also illustrates that, at the beginning of the process, a step that produces a zero can be omitted. Since the first digit 1 is less than the divisor 4, the first step is instead performed on the first two digits 12. Similarly, if the divisor were 13, one would perform the first step on 127 rather than 12 or 1.

Read more about this topic:  Long Division

Famous quotes containing the word method:

    “I have usually found that there was method in his madness.”
    “Some folk might say there was madness in his method.”
    Sir Arthur Conan Doyle (1859–1930)

    You that do search for every purling spring
    Which from the ribs of old Parnassus flows,
    And every flower, not sweet perhaps, which grows
    Near thereabouts into your poesy wring;
    You that do dictionary’s method bring
    Into your rhymes, running in rattling rows;
    Sir Philip Sidney (1554–1586)

    The method of political science ... is the interpretation of life; its instrument is insight, a nice understanding of subtle, unformulated conditions.
    Woodrow Wilson (1856–1924)