Division Algorithm

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of division. Some are applied by hand, while others are employed by digital circuit designs and software.

Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division. Fast division methods start with a close approximation to the final quotient and produce twice as many digits of the final quotient on each iteration. Newton-Raphson and Goldschmidt fall into this category.

Discussion will refer to the form where

  • Q = Quotient
  • N = Numerator (dividend)
  • D = Denominator (divisor).

Read more about Division Algorithm:  Division By Repeated Subtraction, Long Division, Integer Division (unsigned) With Remainder, Slow Division Methods, Large Integer Methods, Division By A Constant, Rounding Error

Famous quotes containing the word division:

    For a small child there is no division between playing and learning; between the things he or she does “just for fun” and things that are “educational.” The child learns while living and any part of living that is enjoyable is also play.
    Penelope Leach (20th century)