Liquid Crystal - Pattern Formation in Liquid Crystals

Pattern Formation in Liquid Crystals

See also: Pattern formation

Anisotropy of liquid crystals is a property not observed in other fluids. This anisotropy makes flows of liquid crystals behave more differentially than those of ordinary fluids. For example, injection of a flux of a liquid crystal between two close parallel plates (viscous fingering), causes orientation of the molecules to couple with the flow, with the resulting emergence of dendritic patterns. This anisotropy is also manifested in the interfacial energy (surface tension) between different liquid crystal phases. This anisotropy determines the equilibrium shape at the coexistence temperature, and is so strong that usually facets appear. When temperature is changed one of the phases grows, forming different morphologies depending on the temperature change. Since growth is controlled by heat diffusion, anisotropy in thermal conductivity favors growth in specific directions, which has also an effect on the final shape.

Read more about this topic:  Liquid Crystal

Famous quotes containing the words pattern, formation, liquid and/or crystals:

    It may be tempting to focus on the fact that, even among those who support equality, men’s involvement as fathers remains a far distance from what most women want and most children need. Yet it is also important to acknowledge how far and how fast many men have moved towards a pattern that not long ago virtually all men considered anathema.
    Katherine Gerson (20th century)

    Those who were skillful in Anatomy among the Ancients, concluded from the outward and inward Make of an Human Body, that it was the Work of a Being transcendently Wise and Powerful. As the World grew more enlightened in this Art, their Discoveries gave them fresh Opportunities of admiring the Conduct of Providence in the Formation of an Human Body.
    Joseph Addison (1672–1719)

    Don’t forget the Dance Halls
    Warwick and Savoy,
    Where he picked his women, where
    He drank his liquid joy.
    Gwendolyn Brooks (b. 1917)

    It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objects—say crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.
    Karl Popper (1902–1994)