Line Bundle - Characteristic Classes, Universal Bundles and Classifying Spaces

Characteristic Classes, Universal Bundles and Classifying Spaces

The first Stiefel–Whitney class classifies smooth real line bundles; in particular, the collection of (equivalence classes of) real line bundles are in correspondence with elements of the first cohomology with Z/2Z coefficients; this correspondence is in fact an isomorphism of abelian groups (the group operations being tensor product of line bundles and the usual addition on cohomology). Analogously, the first Chern class classifies smooth complex line bundles on a space, and the group of line bundles is isomorphic to the second cohomology class with integer coefficients. However, bundles can have equivalent smooth structures (and thus the same first Chern class) but different holomorphic structures. The Chern class statements are easily proven using the exponential sequence of sheaves on the manifold.

One can more generally view the classification problem from a homotopy-theoretic point of view. There is a universal bundle for real line bundles, and a universal bundle for complex line bundles. According to general theory about classifying spaces, the heuristic is to look for contractible spaces on which there are group actions of the respective groups C2 and S1, that are free actions. Those spaces can serve as the universal principal bundles, and the quotients for the actions as the classifying spaces BG. In these cases we can find those explicitly, in the infinite-dimensional analogues of real and complex projective space.

Therefore the classifying space BC2 is of the homotopy type of RP∞, the real projective space given by an infinite sequence of homogeneous coordinates. It carries the universal real line bundle; in terms of homotopy theory that means that any real line bundle L on a CW complex X determines a classifying map from X to RP∞, making L a bundle isomorphic to the pullback of the universal bundle. This classifying map can be used to define the Stiefel-Whitney class of L, in the first cohomology of X with Z/2Z coefficients, from a standard class on RP∞.

In an analogous way, the complex projective space CP carries a universal complex line bundle. In this case classifying maps give rise to the first Chern class of X, in H2(X) (integral cohomology).

There is a further, analogous theory with quaternionic (real dimension four) line bundles. This gives rise to one of the Pontryagin classes, in real four-dimensional cohomology.

In this way foundational cases for the theory of characteristic classes depend only on line bundles. According to a general splitting principle this can determine the rest of the theory (if not explicitly).

There are theories of holomorphic line bundles on complex manifolds, and invertible sheaves in algebraic geometry, that work out a line bundle theory in those areas.

Read more about this topic:  Line Bundle

Famous quotes containing the words universal, bundles and/or spaces:

    And universal Nature, through her vast
    And crowded whole, an infinite paroquet,
    Repeats one note.
    Ralph Waldo Emerson (1803–1882)

    He bundles every forkful in its place,
    And tags and numbers it for future reference,
    So he can find and easily dislodge it
    In the unloading. Silas does that well.
    He takes it out in bunches like birds’ nests.
    Robert Frost (1874–1963)

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)