A Lie ring is defined as a nonassociative ring with multiplication that is anticommutative and satisfies the Jacobi identity. More specifically we can define a Lie ring to be an abelian group with an operation that has the following properties:
- Bilinearity:
- for all x, y, z ∈ L.
- The Jacobi identity:
- for all x, y, z in L.
- For all x in L.
Read more about Lie Ring: Examples
Famous quotes containing the words lie and/or ring:
“Your remark that clams will lie quiet if music be played to them, was superfluousentirely superfluous.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“These words dropped into my childish mind as if you should accidentally drop a ring into a deep well. I did not think of them much at the time, but there came a day in my life when the ring was fished up out of the well, good as new.”
—Harriet Beecher Stowe (18111896)
Related Phrases
Related Words