Lie Bracket of Vector Fields - Definition

Definition

Each vector field X on a smooth manifold M may be regarded as a differential operator acting on smooth functions on M. Indeed, each vector field X becomes a derivation on the smooth functions C∞(M) when we define X(f) to be the element of C∞(M) whose value at a point p is the directional derivative of f at p in the direction X(p).

The space of derivations of C∞(M) is a Lie algebra under the operation . This Lie algebra structure can be transferred to the set of vector fields on M as follows.

The Jacobi–Lie bracket or simply Lie bracket, of two vector fields X and Y is the vector field such that

Such a vector field exists because the right hand side is a derivation of C∞(M), and the vector space of such derivations is known to be isomorphic to the space of vector fields on M by the map sending a vector field X to the derivation .


To make the connection to the Lie derivative, let be the 1-parameter group of diffeomorphisms (or flow) generated by the vector field . The differential of each diffeomorphism maps the vector field Y to a new vector field . To pull-back the vector field one applies the differential of the inverse, . The Lie bracket is defined by

In particular, is the Lie derivative of the vector field with respect to . Conceptually, the Lie bracket is the derivative of in the `direction' generated by .


Though neither definition of the Lie bracket depends on a choice of coordinates, in practice one often wants to compute the bracket with respect to a coordinate system. Let be a set of local coordinate functions, and let denote the associated local frame. Then

(Here we use the Einstein summation convention)

Read more about this topic:  Lie Bracket Of Vector Fields

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)