Lie Bracket of Vector Fields

In the mathematical field of differential topology, the Lie bracket of vector fields, Jacobi–Lie bracket, or commutator of vector fields is a bilinear differential operator which assigns, to any two vector fields X and Y on a smooth manifold M, a third vector field denoted . It is the specialization of the Lie derivative to the case of Lie differentiation of a vector field. Indeed, equals the Lie derivative .

It plays an important role in differential geometry and differential topology, and is also fundamental in the geometric theory for nonlinear control systems (Isaiah 2009, pp. 20–21, nonholonomic systems; Khalil 2002, pp. 523–530, feedback linearization).

A generalization of the Lie bracket (to vector-valued differential forms) is the Frölicher–Nijenhuis bracket.

Read more about Lie Bracket Of Vector Fields:  Definition, Properties, Examples, Applications

Famous quotes containing the words lie and/or fields:

    The innocent are so few that two of them seldom meet—when they do meet, their victims lie strewn around.
    Elizabeth Bowen (1899–1973)

    Gone are the days when my heart was young and gay,
    Gone are my friends from the cotton fields away,
    Gone from the earth to a better land I know,
    I hear their gentle voices calling “Old Black Joe.”
    Stephen Collins Foster (1826–1864)