In mathematics, a level set of a real-valued function f of n variables is a set of the form
that is, a set where the function takes on a given constant value c.
When the number of variables is two, a level set is generically a curve, called a level curve, contour line, or isoline. When n = 3, a level set is called a level surface (see also isosurface), and for higher values of n the level set is a level hypersurface.
A set of the form
is called a sublevel set of f (or, alternatively, a lower level set or trench of f).
is called a superlevel set of f.
A level set is a special case of a fiber.
Read more about Level Set: Properties
Famous quotes containing the words level and/or set:
“Young children learn in a different manner from that of older children and adults, yet we can teach them many things if we adapt our materials and mode of instruction to their level of ability. But we miseducate young children when we assume that their learning abilities are comparable to those of older children and that they can be taught with materials and with the same instructional procedures appropriate to school-age children.”
—David Elkind (20th century)
“I hate the whole race.... There is no believing a word they sayyour professional poets, I meanthere never existed a more worthless set than Byron and his friends for example.”
—Arthur Wellesley, 1st Duke Wellington (17691852)