Lebesgue Measure - Relation To Other Measures

Relation To Other Measures

The Borel measure agrees with the Lebesgue measure on those sets for which it is defined; however, there are many more Lebesgue-measurable sets than there are Borel measurable sets. The Borel measure is translation-invariant, but not complete.

The Haar measure can be defined on any locally compact group and is a generalization of the Lebesgue measure (Rn with addition is a locally compact group).

The Hausdorff measure is a generalization of the Lebesgue measure that is useful for measuring the subsets of Rn of lower dimensions than n, like submanifolds, for example, surfaces or curves in R³ and fractal sets. The Hausdorff measure is not to be confused with the notion of Hausdorff dimension.

It can be shown that there is no infinite-dimensional analogue of Lebesgue measure.

Read more about this topic:  Lebesgue Measure

Famous quotes containing the words relation to, relation and/or measures:

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)

    You know there are no secrets in America. It’s quite different in England, where people think of a secret as a shared relation between two people.
    —W.H. (Wystan Hugh)

    Those who, while they disapprove of the character and measures of a government, yield to it their allegiance and support are undoubtedly its most conscientious supporters, and so frequently the most serious obstacles to reform.
    Henry David Thoreau (1817–1862)