Basic Theorems of The Lebesgue Integral
The Lebesgue integral does not distinguish between functions which differ only on a set of μ-measure zero. To make this precise, functions f and g are said to be equal almost everywhere (a.e.) if
- If f, g are non-negative measurable functions (possibly assuming the value +∞) such that f = g almost everywhere, then
To wit, the integral respects the equivalence relation of almost-everywhere equality.
- If f, g are functions such that f = g almost everywhere, then f is Lebesgue integrable if and only if g is Lebesgue integrable and the integrals of f and g are the same.
The Lebesgue integral has the following properties:
Linearity: If f and g are Lebesgue integrable functions and a and b are real numbers, then af + bg is Lebesgue integrable and
Monotonicity: If f ≤ g, then
Monotone convergence theorem: Suppose {fk}k ∈ N is a sequence of non-negative measurable functions such that
Then, the pointwise limit f of fk is Lebesgue integrable and
Note: The value of any of the integrals is allowed to be infinite.
Fatou's lemma: If {fk}k ∈ N is a sequence of non-negative measurable functions, then
Again, the value of any of the integrals may be infinite.
Dominated convergence theorem: Suppose {fk}k ∈ N is a sequence of complex measurable functions with pointwise limit f, and there is a Lebesgue integrable function g (i.e., g belongs to the space L1) such that |fk| ≤ g for all k.
Then, f is Lebesgue integrable and
Read more about this topic: Lebesgue Integration
Famous quotes containing the words basic and/or integral:
“It seems to me that our three basic needs, for food and security and love, are so mixed and mingled and entwined that we cannot straightly think of one without the others. So it happens that when I write of hunger, I am really writing about love and the hunger for it, and warmth and the love of it and the hunger for it ... and then the warmth and richness and fine reality of hunger satisfied ... and it is all one.”
—M.F.K. Fisher (b. 1908)
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)