Computable Functions and Lambda Calculus
A function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x =β y, where x and y are the Church numerals corresponding to x and y, respectively and =β meaning equivalence with beta reduction. This is one of the many ways to define computability; see the Church-Turing thesis for a discussion of other approaches and their equivalence.
Read more about this topic: Lambda Calculus
Famous quotes containing the words functions and/or calculus:
“One of the most highly valued functions of used parents these days is to be the villains of their childrens lives, the people the child blames for any shortcomings or disappointments. But if your identity comes from your parents failings, then you remain forever a member of the child generation, stuck and unable to move on to an adulthood in which you identify yourself in terms of what you do, not what has been done to you.”
—Frank Pittman (20th century)
“I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.”
—Judith Johnson Sherwin (b. 1936)