Jet Bundle - Infinite Jet Spaces

Infinite Jet Spaces

The inverse limit of the sequence of projections gives rise to the infinite jet space J∞(π). A point is the equivalence class of sections of π that have the same k-jet in p as σ for all values of k. The natural projection π maps into p.

Just by thinking in terms of coordinates, J∞(π) appears to be an infinite-dimensional geometric object. In fact, the simplest way of introducing a differentiable structure on J∞(π), not relying on differentiable charts, is given by the differential calculus over commutative algebras. Dual to the sequence of projections of manifolds is the sequence of injections of commutative algebras. Let's denote simply by . Take now the direct limit of the 's. It will be a commutative algebra, which can be assumed to be the smooth functions algebra over the geometric object J∞(π). Observe that, being born as a direct limit, carries an additional structure: it is a filtered commutative algebra.

Roughly speaking, a concrete element will always belong to some, so it is a smooth function on the finite-dimensional manifold Jk(π) in the usual sense.

Read more about this topic:  Jet Bundle

Famous quotes containing the words infinite, jet and/or spaces:

    When I consider the short duration of my life, swallowed up in the eternity before and after, the little space which I fill and even can see, engulfed in the infinite immensity of spaces of which I am ignorant and which know me not, I am frightened and am astonished at being here rather than there. For there is no reason why here rather than there, why now rather than then.
    Blaise Pascal (1623–1662)

    I cannot beat off
    Invincible modes of the sea, hearing:
    Be a man my son by God.
    He turned again
    To the purring jet yellowing the murder story,
    Deaf to the pathos circling in the air.
    Allen Tate (1899–1979)

    Surely, we are provided with senses as well fitted to penetrate the spaces of the real, the substantial, the eternal, as these outward are to penetrate the material universe. Veias, Menu, Zoroaster, Socrates, Christ, Shakespeare, Swedenborg,—these are some of our astronomers.
    Henry David Thoreau (1817–1862)