Jet Bundle - Infinite Jet Spaces

Infinite Jet Spaces

The inverse limit of the sequence of projections gives rise to the infinite jet space J∞(π). A point is the equivalence class of sections of π that have the same k-jet in p as σ for all values of k. The natural projection π maps into p.

Just by thinking in terms of coordinates, J∞(π) appears to be an infinite-dimensional geometric object. In fact, the simplest way of introducing a differentiable structure on J∞(π), not relying on differentiable charts, is given by the differential calculus over commutative algebras. Dual to the sequence of projections of manifolds is the sequence of injections of commutative algebras. Let's denote simply by . Take now the direct limit of the 's. It will be a commutative algebra, which can be assumed to be the smooth functions algebra over the geometric object J∞(π). Observe that, being born as a direct limit, carries an additional structure: it is a filtered commutative algebra.

Roughly speaking, a concrete element will always belong to some, so it is a smooth function on the finite-dimensional manifold Jk(π) in the usual sense.

Read more about this topic:  Jet Bundle

Famous quotes containing the words infinite, jet and/or spaces:

    They will visit you at your convenience, whether you are lonesome or not, on rainy days or fair. They propose themselves as either transient acquaintances or permanent friends. They will stay as long as you like, departing or returning as you wish. Their friendship entails no obligation. Best of all, and not always true of our merely human friends, they have Cleopatra’s infinite variety.
    Clifton Fadiman (b. 1904)

    Gimme the Plaza, the jet and $150 million, too.
    Headline, New York Post (Feb. 13, 1990)

    Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,—far as they were distant from us, so were they from one another,—nay, some were twice as far from each other as from us,—impressed us with a sense of the immensity of the ocean, the “unfruitful ocean,” as it has been called, and we could see what proportion man and his works bear to the globe.
    Henry David Thoreau (1817–1862)